

4.1 EXTREME VALUES OF

Derivatives can tell us if we have maximum or minimum values, and if so, where they exist.

Defⁿ

Let f be a function with domain, D. Then f(c) is the:

- (a) Absolute minimum value on D, iff $f(x) \ge f(c)$ for all x in D.
- (b) Absolute maximum value on D, iff $f(x) \le f(c)$ for all x in D.
- (c) Absolute or global max and min values are also called absolute extrema.

Exploration

Explore $y=x^2$ on the following domains:

$$(-\infty,\infty)$$

[0,2] (0,2] (0,2)

Extreme Value Theorem

If f is continuous on a closed interval [a,b] then f has both a maximum value and a minimum value on the interval.

Local (Relative) Extreme Values

Let c be an interior point in the domain of the function f. Then f(c) is a:

Local minimum value at c, iff $f(x) \ge f(c)$ for all x in an open interval containing c.

Local maximum value on D, iff $f(x) \le f(c)$ for all x in an open interval containing c.

Local Extreme Values

If a function f has a local maximum value or a local minimum value at an interior point c on its domain, and if f`exists at c, then

$$f'(c)=0$$

Critical Point

A point in the interior of the domain of a function f at which f `=0 or f ` does not exist is a critical point of f.

Ex. 4

Find the extreme values of

$$f(x) = \begin{cases} 2 - 3x^2 & x \le 1 \\ 2x - 3 & x > 1 \end{cases}$$

Ex. 5 Using graphical methods, find all extreme values of:

$$f(x) = \ln \left| \frac{x}{1 + x^2} \right|$$

Rolle's Theorem

If f(a)=f(b)=0, then there is at least one point where f'(c)=0. ONLY for polynomials.